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Delamination Mechanics of a Clamped Rectangular
Membrane in the Presence of Long-Range Intersurface
Forces: Transition from JKR to DMT Limits

Guangxu Li and Kai-Tak Wan
Mechanical and Industrial Engineering, Northeastern University,
Boston, MA, USA

A 1-dimensional rectangular freestanding membrane clamped at opposite ends
adheres to the planar surface of a rectangular punch. A tensile load applied to
the punch causes the membrane to deform and gradually delaminate from the
substrate. At equilibrium, the applied load is balanced by the disjoining pressure
at the membrane-punch interface with range, y, and magnitude, p. Applying the
Dugdale-Barenblatt-Maugis cohesive zone approximation, the disjoining pressure
is taken to be uniform and confined to a finite cohesive length at the contact
edge. For a fixed adhesion energy, c¼p y, we investigate the following: (i) the
Derjaguin-Muller-Toporov (DMT) limit where y!1 and p! 0, (ii) the Johnson-
Kendall-Roberts (JKR) limit where y!0 and p!1, and (iii) the general case
for intermediate but finite y and p. Delamination continues until the contact
area shrinks to a line prior to ‘‘pinch-off’’. The results are compared with the
2-dimensional axisymmetric membrane counterpart.

Keywords: Adhesion; Cohesive zone; Delamination; Disjoining pressure; Pinch-off

1. INTRODUCTION

Interfacial adhesion has significant impacts in nano-technology [1] and
life sciences [2]. Historically, the classical Hertz contact theory [3] is
widely adopted to account for mechanical contact between two spheres
or a sphere on planar substrate. It was Derjaguin [4] who pioneered in
incorporating long-range intersurface forces into solid–solid adhesion
interfaces that led to the Derjaguin-Muller-Toporov (DMT) model [5].
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Johnson et al. [6] further considered the local elastic deformation of the
adhering solids in the presence of short-range (or zero range) interac-
tions and perfected the adhesion theory of Johnson-Kendall-Roberts
(JKR). Maugis later adopted the Dugdule-Barenblatt-Maugis cohesive
zone approximation to model finite range and magnitude of intersur-
face forces, and derived the transition from JKR to DMT limits [7]. Not-
withstanding the many colossal applications and rich physical insights
of these celebrated models, they are inadequate to account for mem-
brane adhesion. When clamped membranes or membranous vesicles
come into contact with an adhering substrate, they conform to the
substrate geometry and undergo bending or stretching, rather than
developing the standard Hertz compression within the contact area.
The strain field and the resulting interfacial adhesion mechanics are,
therefore, distinctly different from the classical Hertz contact and the
associated adhesion models. This is particularly true in the context of
biological cells, biomimetic microcapsules [8], micro-electromechanical
systems (MEMS) with moveable bridges and diaphragms [9], gecko feet
[10], carbon nano-tubes [11], and long range interaction between thin
curved shells and wavy substrates [12].

Recently, we constructed adhesion models for the limiting case of
zero-range intersurface forces (JKR-limit) and applied the model to
(a) a 1-D rectangular membrane clamped at the opposite ends and
(b) a 2-D axisymmetric membrane clamped at the circular periphery,
where sample membranes are allowed to deform by mixed bending-
stretching with or without residual stress [13–16]. We further relaxed
the JKR-DMT constraint to allow intermediate magnitude and range
of intersurface forces and refined the 2-D circular membrane adhesion
mechanics [17]. This paper is a further extension to a 1-D rectangular
membrane. Despite the similar configurations, the new 1-D model
possesses characteristic behavior contrasting the 2-D counterpart.

In our previous work [16], the solution is derived for a similar load-
ing configuration: a thin film clamped at the opposite ends deforms
under pure plate bending and in the presence of a fixed tensile
residual stress. Interfacial adhesion considered is limited to zero
surface force range, i.e., JKR limit. In this paper, we consider the
membrane to be under pure stretching such that membrane stress
varies as the external load increases, and a long range surface force.

2. THEORY

Figure 1a shows a rectangular membrane of unit width being clamped
at the opposite ends and adhered to the planar surface of a flat punch
with the same length and width. Upon an external tensile load applied
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to the punch, delamination occurs reducing the contact area. Figure 1b
shows a schematic of half the membrane profile, w(x), from the
centerline to the clamped edge, 0� x� 1. All variables and their

FIGURE 1 (a) Schematic of a clamped rectangular membrane adhered to a
planar punch surface. (b) Drawing in normalized coordinates and variables.
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dimensionless equivalences are defined and listed in Table 1. All
horizontal dimensions are scaled by the membrane half length, a,
while vertical dimensions are scaled by the membrane thickness, h.
The long-range intersurface force or disjoining pressure, p, acting
across the membrane-substrate gap gives rise to a cohesive zone
immediately behind the delamination front (x¼ c). The cohesive edge
(x¼ b) divides the freestanding membrane into an inner cohesive zone
where p acts (c� x� b) and a traction free outer region (b� x� 1). A
few basic assumptions are taken to construct the new adhesion model:
(i) the membrane is deformed by membrane-stretching only with neg-
ligible plate-bending (i.e., zero flexural rigidity), (ii) the debonding
angle, h, is small with dw=dx¼ tan h� sin h� 0, and (iii) any residual
stress and sliding in the contact region are ignored [18].

2.1. The Attractive Surface Force Law

The form of exact disjoining pressure is mathematically involved [19],
though the net effect is here taken to be attractive in the present
context. A finite magnitude, p, and a finite range, y, according to the

TABLE 1 Normalized Coordinates and Variables

Physical parameters (bold) Normalized parameters

Geometrical
parameters

x¼horizontal distance (m)
w¼deformation profile (m)
w0¼vertical displacement of punch (m)
a¼half width of sample membrane (m)
c¼half width of contact area (m)
b¼half width of cohesive edge (m)
h¼membrane thickness (m)

x ¼ x

a
;

w ¼ w

h
; w0 ¼ w0

h
;

c ¼ c

a
; b ¼ b

a

Material
parameters

n¼Poisson’s ratio
E¼ elastic modulus (Nm�2)
r¼ tensile membrane stress (Nm�2)
c¼ interfacial adhesion energy (Jm�2)
p¼disjoining pressure (Nm�2)
y¼ surface force range (m)

s ¼ r1=2
12ð1� n2Þa2

Eh2

� �1=2

c ¼ c
12ð1� n2Þa4

Eh5

� �

p ¼ p
12ð1� n2Þa4

Eh4

� �
y ¼ y

h

Mechanical
loading

F¼ applied external force (N)
U¼ energy terms (J)

F ¼ F
12ð1� n2Þa3

Eh4

� �

U ¼ U
12ð1� n2Þa3

Eh5

� �
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Dugdale-Barenblatt-Maugis model [20,21], are assumed such that

UðwÞ ¼ p within the cohesive zone; c < x � b and 0 < ðw0 �wÞ � y

¼ 0 without the cohesive zone;b < x � 1 and y < ðw0 �wÞ � w0:

ð1Þ
The JKR limit corresponds to y! 0, p!1, and b! c, and the DMT
limit y!1, p! 0, and b! 1. The interfacial adhesion energy, c¼p y,
is a material parameter. Mechanical equilibrium requires F¼ 2p (b–c).
Upon loading, a small punch displacement with w0� y requires the
cohesive zone to extend to the clamped edge (x¼ 1), alluding to a
pseudo DMT limit. Large displacement with w0> y causes the cohesive
edge to retract from the edge and give rise to a fully developed cohesive
zone entirely confined to the freestanding region.

2.2. Membrane Profile

The external load applied to the punch is balanced by the disjoining
pressure, resulting in a deformed membrane profile governed by

FIGURE 2 Membrane profile for fixed half contact length c¼ 0.1 and a range
of disjoining pressure.
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�rh � r2w ¼ p for c < x � b
�rh � r2w ¼ ðF=2Þ � dðxÞ for b < x � a,

�
ð2Þ

where r2¼d2=dx2 is the Laplacian operator and d(x) is the Dirac’s
delta function denoting the applied load at the centerline (x¼ 0).
Equation (2) can be rewritten as

�s2 � dwdx ¼ p � x for c < x � b

�s2 � dwdx ¼ pðb� cÞ for b < x � 1,

�
ð3Þ

which can be solved exactly to yield

w ¼
p
2s2

ð�x2 þ 2cxþ 2b� b2 � 2cÞ for c < x � b
pðb�cÞ

s2
ð�xþ 1Þ for b < x � 1.

(
ð4Þ

Figure 2 shows typical profiles for c¼ 0.1 and a range of p. Note the
‘‘cusp’’-like geometry in the cohesive zone leading to the contact edge
in reminiscence of Barenblatt’s crack [20–22], and the linear profile
in the traction-free region alluding to the Griffith’s parabolic geometry
[23]. In the limit of p!1 and b! c, the cusp vanishes and the
freestanding region is linear throughout. The punch displacement is
given by

w0 ¼ wðx ¼ cÞ ¼ � p

2s2
ðbþ c� 2Þðb� cÞ ð5Þ

and the surface force range

y ¼ w0 �wðx ¼ bÞ: ð6Þ

2.3. Energy Balance

Total energy of the membrane-substrate system is given by UT¼
UE�US, with UE the elastic energy due to membrane stretching
and US the surface energy to create new surfaces. For delamination
to occur, ð@UT=@cÞw0¼constant ¼ 0. Since the mechanical response of a
thin flexible membrane is always cubic with F / w3

0;UE ¼R
F � dw0 ¼ 1=4 F �w0. Alternatively, the energy density of s4=24 leads

to UE¼ energy density� area. The average membrane stress is
given by

s2 ¼
12
b�c

R b
c

1
2

dw
dx

� �2
dx for c < x � b

12
1�b

R 1
b

1
2

dw
dx

� �2
dx for b < x � 1.

(
ð7Þ
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Substituting w in Eqs. (4) into (7),

s ¼ 21=6ðb� cÞ1=3p1=3 for c < x � b

61=6ðb� cÞ1=3p1=3 for b < x � 1.

(
ð8Þ

It is noted that s carries now a slightly different definition. Rather
than being a function of x, it is a constant depending on the disjoining
pressure and cohesive zone length. In other words, s cannot be sub-
stituted back to Eq. (4) to yield the membrane profile. The sole purpose
of averaging membrane stress is to yield an analytical expression for
energy. The elastic energy is, therefore, given by

UE ¼ s4

24
� 2 � ðb� cÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
for c<x�b

þ s4

24
� 2 � ð1� bÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
for b<x�1

: ð9Þ

Substituting s in Eqs. (6) and (8) into (9),

UE ¼ 16

3ðb� cÞ3
y4 þ 3

ð1� bÞ3
ðw0 � yÞ4: ð10Þ

The surface energy per unit area has a maximum in the contact zone
with US¼ c (2c), decreases in the cohesive zone, and reaches zero at
the cohesive edge. Therefore,

US ¼ 2c � cþ 2

Z b

c

p � ½y� ðw0 �wÞ� � dx: ð11Þ

Substituting Eqs. (4), (5), and (6) into (11),

US ¼ 2c � c� ðb� cÞ � 2

3
� b� c

2� b� c

� �
pw0 � 2c

� 	
: ð12Þ

2.4. The JKR Limit

In the JKR limit, y! 0, p!1, and b! c. The disjoining pressure
turns into a Dirac’s delta function at the contact edge, the cohesive
zone width (b–c) reduces to zero, and the traction-free freestanding
membrane becomes linear, and is given by

w ¼ w0
1� x

1� c

� �
with w0 ¼

F

2s2
ð1� cÞ: ð13Þ

The mechanical response without delamination is found to be

F ¼ 12w3
0

ð1� cÞ3
ð14Þ
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which is cubic for fixed c. The energy terms reduce to

UE ¼ 3w4
0

ð1� cÞ3
and US ¼ 2c � c: ð15Þ

An energy balance yields the delamination trajectory,

w0 ¼ 21=4

31=2
ð1� cÞc1=4 and F ¼ 4

23=4

31=2

� �
c3=4: ð16Þ

Equations (13) to (16) are consistent with our earlier results [14].
Figure 3 shows F(w0) in the JKR limit. As F increases from null, the
contact area remains intact until F reaches a maximum at Fmax ¼
ð4� 23=4=31=2Þc3=4 � 3:884c3=4 (N.B. Fmax¼ 4c3=4 in Figure 3 for rea-
sons discussed later), which is consistent with our earlier result [14].
In a displacement control configuration, further increase in w0 leads

FIGURE 3 Mechanical response for a range of disjoining pressure. The
dashed curve OABC corresponds to pinch-off with line contact of the DMT
limit. Pinch-off occurs at R0, P0, and J0 for p¼ 4, 10, and JKR limit, respectively.
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to a steady delamination along JJ0 at constant Fmax under neutral
equilibrium. At J0, the contact area reduces to a central line contact
(c¼ 0). An incremental increase in w0 requires the membrane to snap
from the substrate or ‘‘pinch-off’’ at w�

0 ¼ ð21=4=31=2Þc1=4 � 0:6866c1=4.
Since the membrane-punch gap now exceeds the disjoining pressure
range (w0> y) herein, the membrane no longer senses the presence
of the substrate and, thus, returns to its non-deformed plane.

FIGURE 4 Energy as a function of contact length for punch displacement
w0¼ 0.5 and a range of disjoining pressure: (a) elastic energy stored in the
membrane, (b) surface energy, and (c) total energy of the membrane-punch
system. The dashed curve is the JKR limit.
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2.5. The DMT Limit

In the neo-DMT limit, y!1, p! 0, and b! 1. Here we consider a
pseudo-DMT limit (abbreviated as DMT limit hereafter) where b¼ 1,
but p does not necessarily vanish and y�w0. The cohesive zone is
underdeveloped, and the disjoining pressure is present in the entire
non-contact freestanding region. The cusp-like membrane profile is
found from Eq. (4) to be

w ¼ w0
�x2 þ 2cx� 2cþ 1

c2 � 2cþ 1

� �
with w0 ¼ p

2s2
ðc2 � 2cþ 1Þ: ð17Þ

The constitutive relation without delamination is, therefore,

F ¼ 32w3
0

ð1� cÞ3
: ð18Þ

The energy terms become

UE ¼ 16w4
0

3ð1� cÞ3
and US ¼ 2c� 2

3
pw0ð1� cÞ: ð19Þ

Energy balance requires

w0 ¼ p

16


 �1=3
ð1� cÞ4=3 and F ¼ 4p3=4w

3=4
0 : ð20Þ

Figure 5 shows F(w0) for p¼ 0.1. At O (F¼ 0, w0¼ 0), the membrane is
in full contact with the punch. As delamination proceeds along path
OA, F monotonically increases while the contact area shrinks. At A,
the contact area reduces to a line with c¼ 0. Further increase in w0

causes the membrane to pinch-off. Regardless of the surface force
range, the initial loading (w0¼ 0 and y>w0) always begins with the
DMT limit. The pinch-off locus, hereafter denoted by the asterisk,
can be obtained by putting c! 0 into Eq. (18), yielding F� ¼ 32ðw�

0Þ
3.

The condition w�
0 � y implies that the punch displacement falls short

of the surface force range when the membrane completely separates
from the punch. In order words, the membrane can still sense the
presence of the punch and remains deformed until w0> y. The special
case of w�

0 ¼ y denoted by the dagger superscript requires b¼ 1 and
py ¼ 16(yy)3, which is consistent with our earlier result [9]. Now
c¼pyyy ¼ 1, p¼py ¼ 161=4¼ 2, which is the maximum possible disjoin-
ing pressure for the DMT limit to remain valid, and yy ¼ 0.5. The
two limits according to JKR and DMT present distinctly different
delamination processes.
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2.6. The DMT-JKR Transition

For disjoining pressure with intermediate range and magnitude, a
Mathematica code is developed for fixed w0. The cohesive edge is first
determined by numerically solving (6), followed by solving for UE, US,
and UT as functions of c. Figures 4a to 4c show the energy terms for
w0¼ 0.5 and a range of p. At large p (>100), all energy terms approach
the JKR limit. In Fig. 3c, the local minimum indicates a stable equilib-
rium. Figures 5a to 5c show UT(c) for fixed p and a range of w0. In

FIGURE 5 Total energy of the membrane-punch system for disjoining
pressure (a) p¼ 0.5, (b) p¼ 5, and (c) p!1 (JKR limit).
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Fig. 4a, p¼ 0.5 and the DMT limit applies throughout. As the punch
moves from w0¼ 0 to 0.1, the contact area decreases until pinch-off
at w�

0. Delamination proceeds along the dashed curve connecting the
UT minima from left to right. In Fig. 5b, p¼ 5 and y¼ 0.2. the DMT
limit is valid for w0� 0.2. Further punch displacement leads to the
DMT-JKR transition and the cohesive zone becomes fully developed.
Figure 5c shows the JKR limit.

The full mechanical response, F(w0), for a range of p is shown in
Fig. 3. For p�py, the DMT limit is expected. All such curves
(p¼ 0.1, 1, and 2) terminate at the locus OABC with F� ¼ 16ðw�

0Þ
3.

For p> py, all curves begin with the DMT limit prior to the DMT-JKR
transition at w0¼ y. For instance, when p¼ 4, DMT is valid until
w0¼ c=p¼ 0.25 at R. In a load-controlled measurement, pull-off occurs
at R since further increase in load is no longer confined to this energy
balance curve. In a displacement-controlled measurement, further
increase in w0 is possible beyond R. Along RR0, the contact area
reduces while external load remains constant at F¼ 4. The energy

FIGURE 6 Applied load as a function of half contact length for a range of
disjoining pressure. The curve with p¼py ¼ 2 reaches a maximum load at
pinch-off (c¼ 0).
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balance allows one to obtain the last loading point at R0, where c¼ 0
and the membrane pinches off the substrate. In the JKR limit, the
loading curve rises sharply in F until F¼ 4 at J. Further increase in
w0 reduces contact area while F remains at 4 until pinch-off at J0.
The same DMT-JKR transition is predicted for p¼ 10 along path OPP0.
Useful expressions for F(c) and w0(c) are shown in Figs. 6 and 7,
respectively. In Fig. 6, delamination proceeds from bottom right
(c¼ 1 and F¼ 0) to the left (c¼ 0). For p>py, the external load staffs
constant at Fmax with decreasing contact area. The curves terminate
at c¼ 0. In Fig. 7, the DMT limit is sufficient for w0� y. For w0> y,
DMT-JKR transition occurs and the curve becomes linear until
pinch-off at c¼ 0. The dashed line annotated ‘‘DMT-JKR’’ is the locus
of the DMT-JKR transition and is found to be w0¼ (1� c)=2. Figure 8
shows the varying cohesive edge as a function of half contact length.
For p�py, the DMT limit is valid and the cohesive zone extends to
the membrane edge (b¼ 1). For p>py, the trajectory deviates from
the DMT limit at Fmax and b decreases until pinch-off.

FIGURE 7 Punch displacement as a function of half contact length for a
range of disjoining pressure. The dashed curve DMT-JKR indicates the
transitional behavior. The curve with p¼ py ¼ 2 intersects the DMT-JKR line
at c¼ 0.
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3. DISCUSSION

The above calculation leads to a slightly larger maximum force
Fmax¼ 4 compared with the classical JKR limit of Fmax¼ 3.884 in
our previous work [14] (c.f. Fig. 5). The 3% inconsistency lies in the
average membrane stress approximation within and without the
cohesive zone [c.f. Eqs. (7) and (10)] in computing the membrane pro-
file and ultimately the energy balance. A proper method is to allow
membrane stress to vary as a function of distance from the contact
edge. However, discontinuity and non-differentiability will become
inevitable at the cohesive edge, let alone an analytical solution. An
exact numerical solution is beyond the scope of this paper. Neverthe-
less, the small discrepancy does not change the trend of the DMT-JKR
transition when disjoining pressure approaches the JKR limit. The
JKR limit is, therefore, stated to be F¼ 4 instead of 3.884 in Fig. 5.

It is worthwhile to contrast the 1-D model with a 2-D axisymmetric
membrane. We earlier derived a model for a circular membrane
clamped at the periphery with a radius ac and adhered to a circular

FIGURE 8 Cohesive edge as a function of half contact length for a range of
disjoining pressure. Delamination proceeds from right to left. All curves
initiate at c¼ 1 and b¼ 1 until deviation occurs at critical width.
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punch of the same radius, reminiscent of the current rectangular
geometry [17]. To make a meaningful comparison, we choose to equate
the normalized applied load. In 1-D, the membrane is here taken to be
a square with the same width and length, and the normalized applied
load is redefined to be F ¼ F½12ð1� n2Þa2=Eh4� ¼ F½6ð1� n2Þa2c=pEh4�,
implying comparable characteristic length scale, ac¼ (2p)1=2a.
Considering a membrane-substrate interface with a specific interfacial
disjoining pressure, p, the normalized quantities are given by
p1D ¼ p½12ð1� n2Þa2=Eh4� and p2D ¼ p½6ð1� nÞa4c=Eh4� ¼ 2p2p1D �
20p1D, ignoring the effect due to Poisson’s ratio. As an illustration,
Fig. 9 compares the 1-D and 2-D mechanical responses. In the DMT
limit (p1D¼ 0.05 and p2D¼ 1), delamination in both 1-D (path OA)
and 2-D (path OB) is accompanied by a monotoniably increasing
applied load until ‘‘pinch-off’’. The DMT-JKR transition (p1D¼ 5 and
p2D¼ 100) shows contrasting 1-D (path OPP0) and 2-D (path OQQ0)
behavior. The circular membrane reaches a maximum prior to the
transition and decreases monotonically until ‘‘pull-off’’ occurs at a

FIGURE 9 Comparison of mechanical response, F(w0), between 1-D model
(solid) and the 2-D axisymmetric membrane clamped at the periphery
(dashed). Pull-off occurs at Q0 and pinch-off at A, B, and P0.
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non-zero radius. It is obvious that a gradual 1-D pinch-off causes less
damage than an unstable 2-D pull-off. An ideal elliptical membrane
delamination will follow an intermediate path bounded by the 1-D
and 2-D limits.

The new model has significant impacts on the design of a number of
cell-tissue adhesion, micro-devices, and micro-=nano-structures. For
instance, we showed earlier that the stability of a micro-truss struc-
ture depends on combination of the bridge span, separation, and mate-
rials properties of the trusses, as well as the adhesion energy [16]. The
finite magnitude and range of intersurface forces add a new dimension
to the stability consideration and require new design guidelines.

4. CONCLUSION

The adhesion-delamination mechanics of a rectangular thin membrane
is obtained by linear elasticity and thermodynamic energy balance.
Pinch-off with a line contact and the associated critical force and
central displacement are determined. The theoretical framework
allows one to experimentally gauge the material properties of thin
membranes and interfaces and to track the delamination process.
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